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ABSTRACT 

This paper describes recent progress and issues 
in the development of the split time method for 
predicting the probability of a roll motion stability failure 
– capsize or extreme roll motion event – for a ship 
operating in irregular ocean waves. The split time 
method attempts to address the challenge presented by 
the rarity and physical complexity of such events 
separating the problem into a sequence of non-rare and 
rare problems that can be practically characterized with 
advanced numerical methods.  In the broadest terms, the 
non-rare problem can be described as determining the 
rate of occurrence of an intermediate event such as the 
upcrossing of a threshold roll angle, while the rare 
problem can be described as determining the probability 
of capsizing when this intermediate event is realized. The 
current development of the method focuses on two areas 
related to the application of this method for nonlinear 
ship motion in quartering seas. 

The first area of development is the variation of 
the ship’s roll restoring curve in following or quartering 
seas, which is a key element in a pure loss of stability 
event.  To incorporate this phenomenon, the split time 
method has been reformulated with the intermediate roll 
threshold and the critical roll rate leading to capsizing 
after upcrossing described by stochastic processes.  The 
implementation of this method with the results of 
numerical simulation data has led to several important 
results, including the understanding that roll and roll 
rates may be dependent processes in quartering seas and 
the development of novel procedure for characterizing 
distribution of the dependent process at the instant of 
upcrossing. 

The second area of development is the 
probabilistic model of surf-riding, which is a necessary 
step toward evaluating the probability of capsizing or 
large roll motion due to broaching-to following surf-
riding.  Recent results include the evaluation of a suitable 
wave celerity in irregular seas and the use of the 
existence or non-existence of surf-riding equilibria to 
describe a ship’s transition into and out of surf-riding. 

INTRODUCTION 

The Challenge 

Since an extreme roll motion event can result 
in severe damage to or even the loss of a ship, a 
physics-based evaluation of the probability of such a 
stability failure in severe irregular seas would be a very 
useful measure for the assessment of operational risk. 
This is especially true for novel or unconventional 
designs, where operational experience is insufficient or 
even non-existent.  

The principal challenge to the development 
and implementation of such an evaluation is a 
combination of the nonlinearity and rarity of such 
events.  Large roll angles are associated with 
significant nonlinearity of the roll restoring (GZ) curve 
while capsizing, as a transition between two stable 
equilibria, is the ultimate manifestation of nonlinearity.  
Furthermore, there are a number of different scenarios 
of stability failure.  Dynamics of capsizing in beam 
seas is straight forward and, in principle, is similar to 
an escape from a potential well. Following and stern 
quartering seas lead to random stiffness due to the 
change of the roll restoring curve in waves and more 
complex behavior. Surf-riding and broaching-to lead to 
even more complex dynamics, involving surf-riding 
equilibria and lateral motions. 

On the other hand, a stability failure of an 
intact ship is very rare, even in severe operational 
conditions.  As a result, a direct application of a Monte 
Carlo approach using advanced simulation tools 
becomes computationally costly and ineffective, while 
the severe nonlinearity precludes the use of simpler 
dynamic models. A direct fitting of an extreme value 
distribution is also problematic, as such fitting is a 
statistical procedure and the result will be defined by 
the statistically dominant data in the sample. The 
small-amplitude motions are generally statistically 
dominant and their physics is different from large 
motions because of nonlinearity, so the extreme value 
distribution would not reflect the physics of large-
amplitude motions. 



 

The Principle of Separation and Piecewise Linear 
System 

One promising way to solve this problem is the 
application of the Principle of Separation (Belenky et al. 
2012), in which different solutions are considered for 
domains with different physics. The split time method is 
one manifestation of this principle. The simplest 
illustration (and earliest application) of the Principle of 
Separation is based on a rudimentary model of roll with a 
piecewise linear presentation of the nonlinear GZ curve, 
as shown in Figure 1.  

In this presentation, the different linear ranges 
correspond to different physics: attractors or repellers. 
This sequence of attractors and repellers allows the 
modeling of a transition between two stable equilibria, 
which is the essence of a capsizing. The probability of at 
least one capsizing during time T can be expressed as 

  TPTP C exp1)(  (1) 

Here  is an upcrossing rate through the boundary 
between the range 0 and range 1, while PC is the 
probability of capsizing after the upcrossing.  

 
Figure 1: Modeling Severe Nonlinearity with Piecewise Linear 
Stiffness (Belenky, 1993) 
 

Formula (1) is the basis for expressing the 
Principle of Separation in which the problem is separated 
into non-rare and rare problems. The probability of 
capsizing after upcrossing PC is the objective for the rare 
problem; while the upcrossing rate  is targeted by the 
non-rare problem formulation. 

Since the upcrossings are relatively rare, the 
statistics of the roll response (in the absence of 
capsizing) will not be significantly affected by the 
upcrossings themselves. As a result, the processes of roll 
angles and rates can be assumed to be normal. The 
upcrossing rate is then available in closed-form: 
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Here V is the variance of roll, while the dot above the 
symbol stands for the temporal derivative. Since the 
system is linear within Range 0, the variances of both 
roll and roll rate are available from the frequency 
domain solution.  

The conditions of capsizing after upcrossing 
are formulated through the initial conditions at the 
instant of upcrossing. It has been shown that the roll 
rate at the instant of upcrossing has a dominant 
influence on the results (Belenky 1993), so the 
condition of capsizing after upcrossing can be 
expressed as an exceedance of a critical roll rate: 
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Here index “cr” stands for “critical” and the index “c” 
indicates “at the instant of upcrossing”. The probability 
density function (PDF) fc is different from the general 
distribution of roll rates, because the instant of 
upcrossing is not just “any instant of time”. This leads 
to a general problem of the distribution of a derivative 
at the instant of upcrossing. In the general case, it can 
be expressed through a joint distribution of roll angles 
and rates (Belenky et al. 2008, 2010): 
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For the piecewise linear system, both roll 
angles and rates are uncorrelated normal processes, so 
the distribution (4) is actually a Rayleigh distribution.  
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The verification of the Rayleigh distribution 
by numerical simulation has been presented in Belenky 
et al. (2008). The dynamical system with piecewise 
linear stiffness also allows a closed form expression for 
the critical roll rate.  

  vmcr  02
  (6) 

Here v is the angle of vanishing stability and 2 is a 
negative eigenvalue of the linear solution for the 
repeller in Range 1: 
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kf1 is the angle coefficient of stiffness in Range 1, 
expressed in terms of the roll natural frequency 0, 
while  is the roll damping coefficient. Belenky, et al. 
(2008) reported a successful convergence test for the 
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piecewise linear system, in which the theoretical solution 
was verified with numerical simulation. 

The piecewise linear system is, quite possibly, 
the simplest model of capsize, and is most useful for 
formulating potential solutions of the problem. However, 
for a realistic assessment, a model that is more 
representative of the true hull shape is needed. 
Nevertheless, it has found its applications (Iskandar and 
Umeda 2001, Paroka and Umeda 2006, Umeda, et al., 
2007, 2011). 

 

The Principle of Separation and the Split-Time Method 

 

The simplicity of the piecewise linear model of 
roll has helped towards understanding how to 
simultaneously deal with the nonlinearity and rarity of 
capsizing and has helped to formulate the Principle of 
Separation. Further development has led to the split-time 
method, in which a numerical simulation is used instead 
of the solution of the linear differential equation.  

Belenky, et al. (2008) describes the application 
of the time-split method for the case of beam seas, which 
is illustrated in Figure 2. The non-rare problem is the 
estimation of the rate of upcrossing of the angle of the 
maximum of the GZ curve and the distribution of the roll 
rate at the instant of upcrossing. It can be solved 
numerically using an advanced hydrodynamic simulation 
code, providing a more accurate solution that a frequency 
domain and incorporating exact nonlinear restoring. 

The rare problem can also be solved 
numerically using a series of short simulation starting 
from the threshold roll angle with different initial roll 
rates. The critical roll rate is found by an iterative 
process which is illustrated in the inset of Figure 2.  

 

 
Figure 2 Concept of Split-Time Method for Capsizing in Beam 
Seas (Belenky, et al. 2008) 
 

The method has been implemented using the 
Large Motion Program (LAMP), but can, in principal, 
be used with any time domain simulation code. One of 
the significant consequences of using time domain 
simulation is statistical uncertainty, since all the 
outputs of the Monte-Carlo method are random 
numbers. The implementation of the method 
incorporates the idea that a confidence interval of each 
statistical estimate can be evaluated for each step of the 
process and propagated through the final result 
(Belenky and Weems 2008). The tumblehome and 
flared configurations of the ONR Topsides series 
(Bishop, et al., 2005) were used for a set of sample 
capsizing probability calculations which are also 
described in Belenky, et al,. (2008). 

 

Split-Time Method for Random Stiffness 

 

The next step of the development of the split-
time method was the consideration of the variation of 
roll restoring characteristics in stern quartering and 
following seas, which is realized as random stiffness. 
To include the random stiffness, the upcrossing 
threshold roll angle and the critical roll rate are now 
considered to be stochastic processes. The general 
scheme, nevertheless, remains the same, as illustrated 
in Figure 3: 

 

 
Figure 3 Concept of Split-Time Method Generalized for 
Stability Variation in Waves (Belenky et al. 2010). 
 

Since the threshold is a stochastic process, it is 
convenient to introduce a so-called “carrier” process 
representing the instantaneous difference between the 
threshold roll angle and the instantaneous roll angle: 

 0)()()( mm tttx   (8) 

Here m(t) is the threshold roll angel at time t, which is 
set to be in the vicinity of, but not necessarily at, the 
angle of the maximum of the GZ curve. Belenky et al. 
(2010) describes an algorithm for setting a threshold 
roll angle which preserves the separation of the 
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problem will while maintaining the differentiability of 
the carrier process, even for cases where the 
instantaneous restoring curve becomes degenerate. 

The critical roll rate is also a random process 
and must be calculated at each instant of time, and its 
solution must consider the continuing variation of the 
roll restoring after upcrossing. It is convenient to define a 
process of the difference between the instantaneous and 
critical roll rates; 

 )()()( ttty cr    (9) 

The process y(t) and the process x(t) are 
dependent (Belenky et al. 2010). The definition of these 
two processes allows formula (1) to be used for 
probability of capsizing, but with the upcrossing defined 
for the carrier process x(t) rather than the roll angle . 
Using the general formula for the upcrossing rate: 
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The probability of capsizing after upcrossing is 
expressed as: 
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The probability density distribution fc refers to the values 
of the process y(t) taken at the instant when the process 
x(t) up-crosses the level m0. This leads to the general 
problem of the distribution of a dependent process at the 
instant of upcrossing. In the general case, it can be 
expressed through joint distribution of the process, its 
derivative and the dependent process (Belenky et al. 
2010): 
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Formula (12) has been verified by numerical simulation 
using a process of wave elevations and derivative. The 
dependent process was simulated by introducing a phase 
shift into the Fourier series presentation of the wave 
elevations (Belenky et al. 2010) 

To test the concept, a piecewise linear system 
with variable stiffness was considered. The decreasing 
part of the stiffness is assumed to be randomly shifting 
parallel to calm water value, simulating the stability 
variation in waves, see Figure 4. All of the elements of 
this random stiffness have normal distribution. The 
dynamical system with varying piecewise linear stiffness 
shown in Figure 4 allows a closed form solution for the 
capsizing probability. The convergence of the solution 
has been verified using Monte-Carlo simulations 
(Belenky et al. 2010, 2011).  

 

 
Figure 4: Piecewise Linear Stiffness Term with Time-
Varying Decreasing Part (Belenky et al. 2010) 
 

The numerical implementation of the split-
time method with random stiffness requires a time-
domain evaluation of the stability variation in waves, 
which has been implemented in LAMP (Belenky and 
Weems 2008a, Belenky et al. 2010).  At each time step 
of the simulation, the wave surface is “frozen”, the ship 
is rotated through a range of incremental heel angles 
about its instantaneous position on the wave, and the 
resultant righting moment is calculated from the 
change in the body-nonlinear hydrostatic and Froude-
Krylov pressure forces, see Figure 5. 
 

 

Figure 5 Applying Incremental Heeling Angles to the ONR 
Topsides Tumblehome Hull Form for the Calculation of the 
GZ Curve in Waves (Belenky et al. 2010) 
 

The further numerical implementation of the 
split-time method has encountered some difficulties.  It 
is well known and has been formally proven that a 
stationary stochastic process and its first derivative are 
not correlated (e.g. Priestley, 1981).  Usually, the 
absence of correlation is considered as a good basis for 
assuming independence. Numerical simulations, 
however, show that the assumption of independence is 
not applicable for the carrier process in stern-quartering 
waves. This problem is considered in more detail later 
in this paper. 

 

Split-Time Method for Surf-riding and Broaching-to 

 

A probabilistic description of stability in 
stern-quartering and following seas cannot be 
completed without the consideration of broaching-to, 
which, along with pure loss of stability, provides one of 
the principal mechanisms for capsizing or attaining a 
large roll angle. The nature of broaching-to in regular 
waves is now well understood using concepts from 
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nonlinear dynamics (Spyrou 1996, 1997). In general, two 
distinct mechanisms of broaching-to are identified. 

The first mechanism is broaching-to preceded 
by surf-riding, which is a dynamic equilibrium along the 
ship’s longitudinal axis in which the ship is accelerated 
to the speed of the wave. While being stable in surge, 
this equilibrium can be (depending on the effectiveness 
of the applied control action) unstable in yaw direction, 
forcing the ship into an uncontrollable and sometimes 
violent turn. Such a turn can be accompanied by a large 
roll angle caused by centrifugal forces and may 
eventually result in capsize. The second mechanism of 
broaching-to is more relevant to larger ships and it 
involves a resonant-type escape from the intended 
course. Some types of control may create a hysteresis in 
yaw with two stable modes existing at the same time. 
The broaching-to of that type is associated with a fold 
bifurcation in yaw. 

As with the previous work, the initial numerical 
code development and implementation of the split-time 
method for surf-riding and broaching-to is being based 
on the LAMP code. Prior to attempting the development 
of a probabilistic description of broaching-to, a study 
was performed in order to verify that the hydrodynamic 
code is capable of reproducing known surf-riding and 
broaching-to behavior.  A sample result from this study 
is shown in Figure 6, where the co-existence of surf-
riding and periodic surging responses for different initial 
condition in the same regular wave is demonstrated. 

 

 
 
Figure 6 LAMP Modeling of Coexistence of Surging and Surf-
riding. 
 

The study, which is presented in Spyrou, et al. 
(2009) and summarized in Belenky et al. (2010), has 
demonstrated that most of the known surf-riding and 
broaching-to dynamics can be reproduced with the code. 
This result clears the way for the development and 
implementation of a probabilistic consideration of 
stability failures caused by broaching-to using the split-
time method and the results of numerical simulation. The 
further development is described below in this paper. 

 

STATISTICS OF ROLL IN STERN-
QUARTERING SEAS 

Unexpected Results for Upcrossing Rate in Stern-
Quartering Seas 

 

As mentioned above, the absence of 
correlation between two random processes is usually 
considered as a basis for assuming independence, 
allowing the formula (10) for the upcrossing rate to be 
simplified: 
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While verifying the numerical implementation 
of the split-time method, the upcrossing rate was 
estimated by direct counting and compared to the 
results of formula (13) using different models for the 
distribution of the derivative of the carrier. The result 
was unexpected; the confidence interval of the 
estimated upcrossing rate did not contain the value 
calculated using formula (13). The same result was 
obtained when the comparison was made for roll 
angles. At the same time, an application of formula 
(10) without assuming independence gave reasonable 
agreement, as shown in Figure 7. 

 

 
Figure 7 Observed and Predicted Rate of Upcrossing for Roll 
Angle: Speed 15 kn (Belenky et al. 2010) 

 

In order to check the sensitivity of these 
results to the specifics of the calculation, the numerical 
simulations and upcrossing rate comparison was 
repeated for two additional conditions: a quartering sea 
condition in which speed was changed by 1 knot and 
the heading by 5 degrees, and beam seas. The results 
for the second quartering sea condition were very 
similar to the first.  For the beam case, however, the 
statistical estimate agreed with both formulae (10) and 
(13), see (Belenky et al. 2010). The results suggest that 
roll and roll rate may be dependent in stern quartering 
seas, even while they may appear to be independent in 
beam seas.  The principal difference between these 
conditions is the variation of the roll restoring in 
waves, which will be generally be small in beam seas 
(at least in long-crested beam seas) but will be large in 
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quartering and following seas. The conclusion is that the 
dependence of the roll and roll rate may be a result of a 
change in the physics of rolling due to this change in the 
roll restoring characteristics 

 

Model of Joint Distribution 

 

The methods for modeling probability density 
function (PDF) described in Belenky and Weems, (2008) 
and Belenky et al. (2008) did not include models for 
joint distributions, which is needed for formula (10). A 
simple model for a joint PDF was developed based on 
the moving average algorithm applied to a histogram. 
This approach takes advantage of the large number of 
data points in the stochastic process. 

The calculation scheme is as follows. Consider 
two stochastic processes x and z presented with sets of 
time histories. The first step is the calculation of the 
estimate of conditional variance of the process x under 
the condition that the process z takes a particular value. 
The second step is the evaluation of a series of 
conditional histograms. Then the conventional “boxcar” 
formula is applied to each of the conditional histograms. 
The result is actually a model of conditional PDF of the 
processes x and z. To complete the calculation, the same 
procedure is applied to marginal histogram of process z. 
Finally, an approximate PDF, denoted by the symbol f*, 
is computed as: 

      zfzxfzxf *** |,   (14) 

This procedure does not guarantee satisfaction of the 
normalization conditions or equality of variance, so 
corrections are necessary as described in Belenky and 
Weems (2008). Figure 8 shows the sample of a joint PDF 
computed for the wave elevations (process x) and its 
derivatives (process z). The result is visually very similar 
to joint PDF of two uncorrelated Gaussian processes. 
More details on the method are available in Belenky and 
Weems (2012a). 

 
Figure 8 Joint PDF and Horizontal Section for Wave 
Data (Belenky and Weems, 2012a). 

 

Estimates of Correlation 

 

A correlation is a measure of the dependence 
between two random variables or stochastic processes.  
It is expressed through the covariance, which is the 
second joint central moment. For stochastic processes 
of roll angles and rates presented with an ensemble of 
Nr records of Nt point each, its estimate is expressed as: 
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Here the asterisk means “estimate” and m stands for 
mean value of roll angle. The estimate of the 
correlation coefficient is expressed as  
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It is normalized by the standard deviations and changes 
from -1 to 1. 

Independent variables or processes are not 
correlated, but the opposite is not always correct; 
dependent processes may be uncorrelated. Only normal 
processes (or variables) are guaranteed to be 
independent when they are uncorrelated. It has been 
proven formally that the first derivative of a stationary 
stochastic process is not correlated with the process 
itself. Therefore, the objective of this statistical 
analysis here is to verify the calculation method 
(especially confidence interval) against theoretical 
values. 

Four data sets are used for a numerical study 
of this problem. The first is a wave elevation data set 
(Belenky and Weems 2012a) while the other three are 
roll motion data sets from LAMP simulations (Belenky 
et al. 2010). The roll motion data sets are for two stern 
quartering conditions (heading 45 and 40 degrees with 
speed 15 and 14 kn respectively) and one beam seas 
conditions. The wave elevation data set consists of 200 
records of 30 minutes duration while the ship motion 
data sets consist of 200 records of 40 minutes duration. 

Since the volume of the sample is large, 
normal distribution was assumed for the estimates of 
covariance (15) and correlation coefficient (16). 
Following Priestley (1981) the variance of the 
covariance estimate for a record was estimated as: 
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*
, R  is an estimate of the cross-correlation function for 

roll and roll rates. The variance of the covariance for the 
ensemble is expressed as: 
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Details of calculation of these estimates can be 
found in Belenky and Weems (2012a). The result of 
statistical processing of these data samples in terms of 
correlation coefficients is shown in Figure 9. Confidence 
probability was accepted to be 95%. All of the 
confidence intervals contain zero, so the statistical 
technique is not rejected by the theory. 

 

 
Figure 9: Estimates of Correlation Coefficients between 
the Processes and Derivatives (Belenky and Weems 
2012a) 
 

Correlation of Higher Order 

 

Since the correlation between the roll and roll 
rates is zero, the measure of dependence should be 
searched in higher-order joint moments. The estimate of 
the second joint central moment – the second-order 
covariance is expressed as: 
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An estimate for non-dimensional second-order 
correlation coefficient is written as:  
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The calculation of both of these estimates from 
the time series is straight forward.  It is not difficult to 
see that if the processes are independent, the second 
order correlation coefficient will equal unity: 
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To evaluate the statistical uncertainty, the 
second-order covariance can be expressed through the 
first order covariance of the centered squares of roll 
and roll rates: 
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where the centered squares are: 
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Assuming independence of all the estimates, the 
variance of the second-order squares can be expressed 
as: 
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The first term in equation (23) is the variance 
of the estimate of covariance of the centered squares. It 
can be calculated using formula (17), but auto- and 
cross-correlation functions are calculated for the 
centered squared (22) instead of roll angles and rates. 
Other terms are variances of the variance estimates of 
roll angles and rates. Formula for the variance of the 
variance is available in the literature, Priestley (1981), 
for example. Details of application of this formula for 
roll motions are discussed in (Belenky and Weems 
2012).  

Figure 10 shows the estimates of the second-
order coefficients calculated for all four sample data 
sets. The wave data set has shown independence 
between the wave elevations and their temporal 
derivative. This is expected result, because for a 
normal process, absence of correlation means 
independence. It also means that the calculation 
technique is robust enough (despite all the 
assumptions) to recover the correct theoretical result.  

All the ship motion data sets indicate 
dependence between roll angles and rates. However, 
the confidence interval of estimate of r2 of the for the 
beam seas almost “touches” the unity. This may be 
interpreted that the dependence in beam waves is not 
that strong. The result in stern quartering seas shows 
significant dependence between roll angles and rates. 
These results support the hypothesis expressed above 
that this dependence may be the results of stability 
variations in waves that is much stronger in stern 
quartering seas than in beam seas. 
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Figure 10. Estimates of Second-Order Correlation 
Coefficient between the Processes and Derivatives 
(Belenky and Weems 2012a) 

 

Visual Appearance of Dependence without Correlation  

 

Correlation between two random variables can 
be visually seen in the joint distribution as a turn of the 
axis, when looking at horizontal sections, see Figure 11. 

 
Figure 12: Theoretical Gaussian Joint Distributions (a) without 
and (b) with Correlation 
 

Figure 13 shows graphic representation of joint 
distribution of roll angles calculated from the stern 
quartering data set. The moving average method was 
used to approximate the PDF and reveal its shape. As 
expected, the there is no obvious “turn of the axis” in the 
horizontal section of joint PDF. However, these sections 
look a little bit “squeezed” from the diagonal directions. 
This change from the usual oval shape may be a visual 
sign of the dependence without correlations. 

 
Figure 13: Joint Distribution for Heading 45° at 15 Knots 
(Belenky and Weems 2012a) 

 

ELEMENTS OF THE NUMERICAL 
PROCEDURE  

General 

 

The objective of the numerical procedure is to 
calculate the probability of capsizing using formula (1) 
and the results of an advanced numerical code. 
Following the Principle of Separation, the problem is 
presented in two parts. The objective of the non-rare 
problem is to evaluate the upcrossing rates, which can 
theoretically be presented with formula (10). The 
objective of the rare problem is to calculate the 
probability of capsize after upcrossing, which can 
theoretically be presented with formula (11). The major 
component of formula (11) is the distribution of the 
process y (the difference between the critical and 
instantaneous roll rates) at the instant of upcrossing. 
This distribution provides the interface between the 
rare and non-rare problem, and its theoretical solution 
is given by formula (12). 

These three computations are the principal 
elements of the numerical procedure and the objectives 
of the study described in this section of the paper. 

 

Rate of Upcrossings 

 

The dependence of the roll angles and rates 
requires the consideration of the joint PDF of these 
processes in order to evaluate the upcrossing rate. A 
direct use of formula (10) for this purpose is 
impractical because the joint PDF must be evaluated at 
the upcrossing threshold, and a reliable approximation 
of the joint PDF can be achieved only if the computed 
data sample contains a sufficient number of the 
threshold values. But if it is the case, the upcrossing 
rate can be estimated by direct counting and the 
formula (10) is not necessary. 

If there are no (or an insufficient number of) 
upcrossings encountered, the non-rare problem is, in 
fact, an extrapolation problem of its own. It is, 
however, simpler that the capsizing probability, 
because the threshold is much lower and the upcrossing 
of an angle around the maximum of the GZ curve is 
significantly less rare than a capsizing. 

Belenky and Campbell (2011) reported a 
comprehensive study of the extrapolation of an 
estimate of the upcrossing rate. One of the considered 
methods is Peak-over-Threshold (POT) method, which 
can be used to characterize the nonlinear response at 
the upcrossing threshold by further separating the non-
rare response at a lower threshold (see also Campbell 
and Belenky (2010, 2010a). This lower threshold is 
chosen to be low enough for sufficient upcrossings to 
be observed, but high enough that the nonlinearity of 
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the system has already influenced the response and 
Poisson flow is applicable.  

Peaks exceeding this threshold can be sampled 
using two techniques. The first technique fits a 
distribution with all the peaks using a Weibull or 
truncated Raleigh distribution. Then, the rate of 
upcrossing of the level above the 1st threshold can be 
expressed as: 
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Here m01 the threshold where a sample of sufficient size 

can be obtained; *
1  is the statistical estimate of the rate 

of upcrossing of the 1st threshold m01; and FEV(m0) is the 
cumulative distribution function (CDF) of the extreme 
values exceeding the threshold m01 over a time windows 
TW, see Figure 14.  
 

 
Figure 14 Sampling for Extreme Value Distribution Fit 
 

The scheme for the calculation of a confidence 
interval for this estimate is presented in Campbell and 
Belenky (2010b). 
 

Extrapolation for Distribution of Dependent Processes  

 

Calculating the probability of capsizing using 
formula (12) requires a joint distribution of the carrier 
process x, the dependent process y, and the derivative of 
the process z = x . Fitting such a distribution, while 
possible, may present a significant challenge, since all 
three processes may be mutually dependent and not 
normal.  Instead, the following extrapolation scheme 
may be used:  

1. Set a series of the intermediate thresholds of the 
carrier process x where upcrossings can be observed 
in statistically significant numbers 

2. Collect a sample of values of the dependent process 
y at the instant of each upcrossing 

3. Estimate the mean value and variance for each of the 
intermediate thresholds 

4. Fit curves for the mean values and variances as a 
function of the intermediate thresholds’ locations 
using sample estimates from the previous step 

5. Evaluate a histogram for each sample 

6. Recalculate all the histograms from the previous 
step to zero mean value and unity variance 

7. Average the histograms from the previous step as 
an approximation of the distribution 

8. Use the fitted curve to extrapolate the mean value 
and the variance up to the level of interest 

9. Use the extrapolated mean value and the variance 
to recalculate the approximate distribution at the 
level of interest 

10. Attach the tails to the distribution from the 
previous step, check normalization, and apply 
formula (11) 

The application of this procedure is 
demonstrated using 200 records of the wave data set 
(30 minute records generated via a Bretschneider 
spectrum for Sea State 8 with HS=11.5 m and 
Tm=16.4s). The dependent process was created by 
applying a phase shift (Belenky et al. 2010). Since all 
of the processes are normal, their dependence is 
completely defined by the correlation moment, and the 
“carrier” process x(t) is truly independent of its 
derivative. An important aspect of this demonstration is 
that distribution of the dependent process at upcrossing 
can be analytically evaluated for any level using 
formula (12) and provides and exact basis for 
comparison. 

 

Mean Value and Variance of Dependent Process  

 

The series of intermediate thresholds 
consisted of 25 values from 6 to 12 m with a step of 
0.25 m. A minimum of 10 values were used to estimate 
the mean value, and a minimum of 30 values was used 
for the standard deviation. The results are shown in 
Figure 15 along with the theoretical values. Both 
statistical values were fitted with the straight lines 
using the minimum squares method. 

 
Figure 15 Statistical Estimates of Mean Values and 
Standard Deviation Compared to Theoretical Values 
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Distribution of Dependent Process  

Histograms are evaluated for each intermediate 
threshold where at least 100 crossings were available. 
The width of the bin is calculated with Scott’s formula 
(Scott 1979); 
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Here *
yc  is an estimate of the standard deviation of the 

dependent process at the upcrossing, a is the current 
intermediate threshold for upcrossing, and Nc(a) is the 
number of upcrossing over the threshold a. 

All the histograms are then recalculated to zero 
mean value and unity variance. If the histograms are 
expressed in terms of probability density, this 
recalculation is done by changing scale on the abscissa 
axis: 
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Here *
ycm  is an estimate for mean value of the dependent 

process at the upcrossing. 

The results in Figure 16 clearly show that the 
theoretical distribution is a mean for the plotted 
statistical distributions, which are plotted in the form of 
frequency polygons. Averaging over the statistical 
distribution reveals the shape of the distribution in Figure 
17 that is smooth enough to be used as a model for 
distribution (using linear interpolation) without further 
smoothing. 

 
Figure 16: Recalculated Statistical Distributions in a Form of 
Frequency Polygons Superimposed on the Theoretical 
Distribution (Only Three Polygons are Shown) 
 

The next step is to recalculate the distribution to 
the values of average and variance extrapolated for the 
threshold of interest:  

 )()( amauy ycycc   (28) 

The sample result for a=20 m is shown in 
Figure 18. Despite having no statistical data for this level 

(maximum observed value for the process x was 13.83 
m), the approximate distribution looks quite reasonable 
in comparison to the known theoretical distribution.  

 
Figure 17 Theoretical and Approximate Shapes of 
PDF of the Dependent Process at Upcrossings 

 
Figure 18 Approximate and Theoretical Distributions 
of the Dependent Value at Crossing of the Level of 
20m 
 

Attaching a “Tail”  

The problem, however, is that this distribution 
cannot be used to calculate the probability of the 
negative values of y at upcrossing as required in 
formula (11) since it starts from the value 2.14 m. 
Thus, one more extrapolation is needed to complete the 
solution – a tail needs to be attached to the approximate 
distribution. The tail of the distribution is approximated 
as 
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The coefficients p1, p2 and p3 are found from 
the following set of conditions: 

 Value of the tail equals the PDF at the chosen 
attachment point 

 The first derivative of the tail at the attachment 
point equals the PDF derivative at this point 

 Minimize the square of the deviation between the 
tail and the points of the PDF beyond the 
attachment point (less if negative, more is positive). 
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The fulfillment of these conditions is expressed 
as a system of algebraic equations: 
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Where yat is the abscissa of the chosen attachment point, 
fa is the approximate PDF, nat is an index of the 
attachment point in the array of the values of yi used for 
defining the approximate PDF, and nend is the index of 
the first point in the case of “negative” tail (that tends to 
negative infinity) or the last point in the case of 
“positive” tail (that tends to positive infinity). 

In the same manner that multiple threshold 
levels were used with the POT method, it makes sense to 
create a set of attachment points rather than picking a 
single value. The result is then averaged in the following 
way: 
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Here nb(y) is the index of the nearest point from {yi} to 
the current point y. The sample result for the negative tail 
is shown in Figure 19.  The tail was fitted by averaging 
among four attachment points corresponding to the 
interval between the 5th and 20th percentiles. 

The final calculation is the probability of 
encountering a negative value of the process y when the 
process x crosses the level of a=20 m: 
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Here *
CP  is an extrapolated value, while PC is the 

theoretical value. Keeping in mind that the rate of 
upcrossing at the level of 20 m is on the order 10-13, the 
considered event has a rate on the order of 10-17. An error 

of about 100% seems like a very accurate result for 
such a rare event, which demonstrates the practicality 
of the proposed method. 

 

 
Figure 19: Comparison of Approximate Negative Tail 
Averaged Among 4 Attachment Points, Corresponding 
to Range from 5th to 20th Percentile 

 

MODEL OF SURGING IN IRREGULAR WAVES 

General  

As was noted above, the dynamics of surf-
riding and broaching-to in regular waves is well 
understood (Spyrou 1996, 1997) and the physics of 
these phenomenal can be well reproduced by advanced 
hydrodynamic codes (Spyrou et al. 2009). This creates 
a solid background for the development of probabilistic 
methods, especially those that use the Principle of 
Separation of system dynamics. Themelis and Spyrou 
(2007) successfully applied the critical wave groups 
method to estimate the probability of stability failures 
in waves, that can handle the broaching-to instability. 
The strength of the wave group method is its flexibility 
in terms of the selected level of rigor, thus allowing 
practicality in different contexts. The split-time 
method, on the other hand, may be more robust in 
terms of reflecting the statistics of initial conditions. 
Since the methods share the same philosophy of 
handling rarity (Belenky et al. 2012), they have a 
potential to complement each other. The application of 
a probabilistic method for surf-riding and broaching-to 
encounters a challenge that was not present before: the 
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necessity to consider the problem in time and space in 
the same time.  

A cornerstone of the dynamics of surf-riding is 
the appearance of a pair of surf-riding equilibria of which 
the one that attracts in surge may be a repeller in yaw, 
depending on the effectiveness of rudder control.  
Another key issue is the possible dominance in state 
space of this equilibrium due to a “homoclinic 
connection” bifurcation that renders surf-riding 
inevitable. For this reason, the analysis of the 
probabilistic properties of the equilibrium in irregular 
way is the next objective (Belenky et al. 2011a, 2012a; 
Spyrou et al. 2012). 

 

Physics of Surf-Riding  

 

The physical mechanism of surf-riding includes 
the appearance of dynamical equilibria and a ship’s 
attraction to the stable equilibrium. The equilibria appear 
when the wave surging force becomes large enough to 
offset the difference between the ship’s thrust and its 
resistance at wave celerity. The equilibrium points are 
the positions of the ship on the wave where the forces 
balance exactly. 

To illustrate this, consider surf-riding in regular 
waves and plot the variation in the wave-induced surging 
force as a function of the ship’s position on the waves; 
see Figure 20.  In this plot, the horizontal axis is the 
position of the ship’s center of gravity ahead of the wave 
crest, the dashed blue line is the wave profile, and the red 
line is the wave surging force, with a negative value 
indicating a forward (accelerating) force. The largest 
forward surging force (most negative on this plot) occurs 
when the ship is running down the wave face. The 
magnitude of surging force is a function of wave 
amplitude. 

 
Figure 20 On the Appearance of Surf-Riding Dynamic 
Equilibria (Belenky et al. 2012a) 

 

Since the commanded rpm is insufficient to 
propel the ship with wave celerity even in calm water, 
additional wave force is necessary to drive the ship at 

wave celerity. If the amplitude of the wave surging 
force exceeds the absolute value of the balance 
between thrust and resistance, two intersection points 
appear, as shown in Figure 20. Those will be called 
“surf-riding equilibria” (though it is known that this is 
not an exact condition of equilibrium); one shows 
stable features (black point, located around the wave 
trough) and the other behaves unstably (empty point, 
located around wave crest). 

 

Equation of Motion  

Consider a simple model for one-degree-of-
freedom nonlinear surging: 
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Here M is mass of the ship, A11 is longitudinal 
added mass, R is resistance in calm water, T is the 
thrust in calm water, n is the number of propeller 
revolutions, FX is the Froude-Krylov wave surging 
force, and G is longitudinal position of the center of 
gravity in the Earth-fixed coordinate system. The dot 
above the symbol stands for temporal derivative. 

Polynomial presentations are used for the 
resistance and thrust: 
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The coefficients r and  are meant to be fit to the 
appropriate calm water curves (Spyrou 2006). 

 

Wave Surging Forces 

Since the Earth-fixed coordinate system is 
used, irregular waves are presented as a spatial–
temporal stochastic process using the standard 
Longuet-Higgins model: 
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 is the spatial coordinate, rWi is amplitude of the wave 
component characterized by the wave number ki and 
frequency i; and i is a random phase with uniform 
distribution from 0 to 2. The dispersion relation 
connects the wave number and frequency of each 
component. 
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Here g is the gravity acceleration. As the model is 
meant at this stage to be qualitative, a linear wave-body 
formulation seems to be appropriate, so: 
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As a body-linear formulation is adopted, the amplitude 
AXi and phase shift i are available from the response 
amplitude and phase operators: 

 )( iWiXi kRAOrA   (38) 
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Here x and z are measured in the ship fixed coordinate 
system (positive forwards of amidships and upward from 
the base line), b(x,z) is the molded local half-breadth and 
d is the amidships section draft. 

Figure 21 shows the RAO of the surging wave 
force for the tumblehome ship from the ONR topside 
series (Bishop et al. 2005). The phase shift i is presented 
as Figure 22. 

 
Figure 21: RAO of Surging Force (Belenky et al. 2011a) 
 

 
Figure 22: Phase Shift of Surging Force (Belenky et al. 
2011a). 
 

Wave Bandwidth 

 

Belenky et al. (2011a) used a variable 
bandwidth for irregular waves to see the effect of 
irregularity by increasing number of frequency 
components. A filter was used for this purpose: 
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Here m is the modal frequency of the spectrum while 
 is the frequency step. The filter consists of two 
lines: the low frequency corresponds to the index blow 
and the high frequency index is bup. These two indices 
are parameters for controlling the spectrum bandwidth. 
To keep the variance of the wave elevation constant, a 
normalization coefficient is used: 
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A sample result of the bilinear filter is shown 
in Figure 22. After discretizing a Bretschneider 
spectrum with 174 frequencies, a total filtered 
spectrum is created by selecting the lower boundary 10 
frequencies below the modal frequency and the upper 
boundary 20 frequencies above the modal frequency. 
This corresponds to a decrease of the spectrum 
bandwidth parameter from 0.703 to 0.21 

Using the filter (42) and the model (33) 
allowed Belenky et al. (2011a) to study the influence 
of the bandwidth on the surf-riding. It was found that it 
enough to have only two frequency component to 
observed a “catch and Release” i.e. surf-riding for a 
finite duration of time. This is a principle difference 
between surf-riding in regular and irregular waves. 
 

 
Figure 23: Example of Changing Wave Spectrum Bandwith 
Using a Filter (Belenky et al. (2011a). 
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CELERITY OF IRREGULAR WAVES 

A phenomenological approach to surf-riding 
prediction would use wave celerity as the threshold ship 
speed that, if surpassed, would realize an attraction to 
surf-riding.  However, the definition of celerity for an 
irregular sea might be contemplated in more than one 
way, each of which may produce quantitatively different 
values. By any definition, celerity is not necessarily a 
smooth curve and it can contain jumps to infinity which 
cannot be tolerated in an ordinary surf-riding assessment 
framework. Therefore, the handling of irregular wave 
celerity is an important milestone on the way toward 
establishing a rational approach. 

Longuet-Higgins (1957) and more recently 
Baxevani et al. (2003), Aberg and Rychlik (2007) and 
others have produced distributions for various wave 
velocities of a Gaussian sea. However, a key difficulty of 
a formulation targeting surf-riding prediction is that it is 
based on a process built from the difference between 
celerity and ship speed which is strongly nonlinear when 
surf-riding is about to happen. Therefore, a statistical 
model of celerity alone cannot be used.  Various ideas on 
a proper definition of a localized in time-space celerity 
for the problem at hand are found in Spyrou et al. (2012). 
It was considered as quite relevant to monitor the 
velocity of the steepest point on the down slope of the 
wave profile that is nearest to the ship. The maximum 
wave force in surge (which is known to be a critical 
factor for surf-riding) presents usually only a small 
difference in phase from the wave slope. At least one 
such point can always be identified on the down slope of 
every apparent cycle. Whilst it can degenerate to zero 
slope when its distance from a neighboring crest or 
trough shrinks to a zero length, such wave encounters 
represent relatively mild conditions for the ship and such 
singular points should therefore be unimportant for the 
surf-riding probability calculation. 

Let G(t) be the ship’s position at some arbitrary 
time instant t. The following equation (44) can be solved 
numerically for xamax=f(t,amax) in order to identify points 
of maximum slope near to the ship: 
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ζ and x are, respectively, the elevation and the 
longitudinal location of a considered point of the wave 
profile. Newton iterations to find this are started from the 
ship position G(t). To ensure that the point is on the 
down slope, the following inequality is simultaneously 
checked: 
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For a finite difference approximation of the derivative, 
additional points need to be determined, separated by a 
small time interval t. 
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To be certain that the located points lie near 
the ship, one additional inequality condition can be 

imposed on the solution )(
max
k

ax : 
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As an appropriate value of d one can obtain 
some ratio of the instantaneous wave length (e.g. 30%). 

A demonstration of this calculation method is 
shown below for the Topsides tumblehome ship 
traveling in bi-chromatic waves. In Figure 24 the surge 
response reaches just below the celerity curve and the 
ship responds in an ordinary quasi-periodic manner. It 
is noted that although the peak of the ship’s speed 
response exceeds the celerity of the shorter wave 
(green line), no major effect comes about. However, as 
shown in Figure 25, a slight increase of the calm water 
speed (propulsion force) creates an up-crossing of the 
time-varying celerity curve and capture into an 
oscillatory type of surf-riding with significant 
departures from the celerity speed. In this case, the 
presented celerity curve seems to be suitable to serve 
the role of the threshold speed curve for surf-riding. 
Further examples including multi-frequency cases can 
be found in Spyrou et al. (2012) Following its initial 
verification using the 1-DOF model of surging, the 
irregular wave celerity calculation is being 
implemented in the Large Amplitude Motions Program 
(LAMP).  The LAMP implementation of the wave 
celerity calculation generally follows the scheme 
described above, but has been adapted for LAMP’s 
more general irregular wave models including oblique, 
short-crested (multi-direction) and nonlinear incident 
waves. The wave point that is tracked is the maximum 
wave slope in the direction of ship travel; it is tracked 
only in that direction, and the resulting wave celerity is 
calculated in this direction.  

In the LAMP implementation of the wave 
celerity calculation is always searched for the nearest 
maximum slope point on the down slope even if an up 
slope maximum is closer. This is done by pre-
computing the elevation and its derivatives on a regular 
spatial interval δxs in the travel direction and 
identifying intervals where a down-slope maximum 
can be found. 

 
 



 

 
Figure 24: A surging pattern in a bichromatic sea just before surf-riding (Fn=0.28): ζ1=2.5 m, λ1=175m and ζ2=3.4m, λ2=152m. 
The straight lines indicate the celerities corresponding to the two harmonic wave components. The broken line is the calculated 
celerity curve (Spyrou et al. 2012). 
 

 
Figure 25: As the celerity threshold is surpassed by slightly increasing the Fn value to 0.283, surf-riding appears 
(Spyrou et al. 2012). 
 
 

 

Figure 26 shows a snapshot of a LAMP 
simulation for the tumblehome hull form from the ONR 
Topsides series running in long-crested irregular waves. 
The plot shows the wave profile at that time instance 
along the ship’s travel direction with marks for the points 
of maximum down slope and elevation (crest). The wave 
in this case is derived from a Bretschneider spectrum 
with HS=7m and Tm=12.0s 

 

 
 
Figure 26 LAMP simulation of ONR Topsides tumblehome 
hull in irregular following seas. 
 

SURF-RIDING EQULIBRIA IN IRREGULAR 
WAVES 

The patterns of surf-riding in irregular waves 
have been discussed already in Belenky et al. (2011, 
2012) and Spyrou et al. (2012). A question that 
underlies these studies is: how is the surf-riding 
behavior related with the appearance or disappearance 
of surf-riding equilibrium?  

A preliminary attempt to answer this question 
is given below. A time history for an example with 
three-component wave from Belenky et al. (2012) is 
presented in Figure 27a.  This example was chosen 
because it contains two “catches” and one “release”, as 
well as obvious asymmetric surging. The importance of 
the latter is that the asymmetric surging is related to the 
presence of surf-riding equilibrium (Spyrou, 2006). 
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b) t=0 s, wave #1, the 
equilibrium exist, attraction 
has started 

c) t=40 s, wave #1, transition 
to the equilibrium, positive 
peak 

d) t=74 s, wave #1, transition 
to the equilibrium, negative 
peak 

e) t=150 s, wave #1, 
transition to the equilibrium 
has been completed 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

f) t=256 s, wave #1, 
equilibrium disappears, the 
surging force decreases 

g) t=300 s, wave #1 overtakes 
the ship, transition to surging 

 h) t=326 s, wave #2 is 
encountered, the previous 
wave has overtaken the ship 

i) t=360s, wave #2 overtakes 
the ship, the surging force 
increases noticeably 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

j) t=380 s, wave #3 is 
encountered 

k) t=398 s, wave #3, the 
equilibrium has appeared 

l) t=434 s, wave #4 is 
encountered 

m) t=490 s, wave #4 has 
overtaken the ship 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
n) t=496 s, wave #5, negative 
peak in periodic surging 

 
o) t=530 s, wave #5, passing 
by the unstable equilibrium 

 
p) t=554 s, wave #5 takes 
over the ship 

r) t=800 s,  wave #6, 
transition to the equilibrium 
has been completed 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

Figure 27 Two captures and one release from surf-riding in a three-component irregular wave; time history (a) and “spatial 
snapshots” (b-r) (Belenky et al. 2012) 
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The duration of the sample case is 15 minutes. 
During that time six waves overtake the ship. The time 
instances when one wave passed and another one was 
encountered are shown in Figure 27a. Following the 
definition described in the previous section, the celerity 
was determined by the “current” wave and was based on 
zero-crossing points. 

The rest of Figure 27 are “spatial snapshots” (b 
through r). Each of these snapshots describes a “spatial 
picture” corresponding to a particular instant of time 
identified in Figure 27a with arrows. The content of each 
snapshot is analogous to Figure 20; it contains the wave 
phase, the “spatial history” of the wave surging force and 
the line corresponding to the balance between the 
resistance and thrust. The intersections of the wave force 
and the balance line represent an approximation of the 
equilibria (strictly speaking, the inertial force is no 
longer zero since the wave celerity is no longer a 
constant). In additional, each spatial snapshot also has 
the boundaries of the “current wave” (in the form of the 
zero-crossing points) as well as a diamond marking the 
position of a ship. The abscissa of the diamond shows 
ship’s position relative to the wave phase. The vertical 
coordinate corresponds to the total force; so when the 
diamond is located on the intersection of the force curve 
and the balance line, it means that the equilibrium has 
been achieved at this instant. 

The first spatial snapshot, Figure 27b, 
corresponds to the initial conditions, with the 
instantaneous speed equal to the commanded (calm 
water) speed. The ship has just encountered wave #1 and 
is located just within its boundary. The surf-riding 
equilibria exist since the surging force crosses the line 
corresponding to the balance between the thrust and 
resistance. 

The stable surf-riding equilibrium attracts the 
dynamical system and one oscillation period is seen in 
Figure 27a until approximately t=100s. The next two 
spatial snapshots, Figures 27c and 27d, correspond to the 
positive and negative peaks during this transition, 
respectively. The transition is completed and the 
dynamical system reaches the stable surf-riding 
equilibrium at around t=150 s, in Figure 27e. 

Looking at Figures 27b through 27e, one can 
see that the amplitude of the surging force is decreasing 
due to lower wave amplitude. This tendency leads to the 
disappearance of the surf-riding equilibria around t=256 
s and the release of the ship from surf-riding (Figure 
27f). 

The ship slows down (Figure 27g), then wave 
#1 overtakes her, and wave #2 is encountered at around 
t=325 s (Figure 27h). The ship experiences the first 
almost periodic surge with the positive peak 
corresponding to the spatial snapshot in Figure 27i. As 
expected, wave #2 overtakes the ship quite quickly and 
wave #3 is encountered around t=380 s (Figure 27j) 

The modulation of wave amplitude and 
surging force then reverses and they begin to increase. 
This is may be already seen in Figure 27h, but becomes 
quite apparent in Figures 27i and 27j. New surf-riding 
equilibria appear around t=398 s (Figure 27k). 

The existence of the surf-riding equilibria has 
an immediate influence on the surge motions, which 
become asymmetric with wider positive peaks and 
sharper negative ones (Spyrou, 2006). Symmetry is 
observed during the passing of waves #4 and #5, 
during which the surf-riding equilibria exists 
continuously (Figures 27l through 27o). Figure 27o 
shows how the dynamical system passed near the 
unstable surf-riding equilibrium, but the ship is not yet 
“caught” and wave #5 takes over (Figure 27p). The 
ship is finally “caught” by wave #6 and at around 
t=800 again reaches the stable surf-riding equilibrium 
(Figure 27r). 

The detailed study of this example reveals the 
existence or non-existence of the surf-riding equilibria, 
which could then be used to explain the ship’s 
transition into and out of surf-riding in irregular seas. 
This ability to characterize the behavior of the 
dynamical system from these equilibria allows 
consideration of a probabilistic formulation for surf-
riding in irregular waves. 

CONCLUSIONS AND FUTURE WORK 

The paper describes the background and 
current status of ongoing research on the probability of 
capsizing in irregular seas. The overall objective of the 
project is to evaluate the probability of capsizing or a 
large roll angle event with the split-time method.  The 
main idea of split-time method is to separate the 
difficult problem of capsizing probability into two 
problem of more manageable complexity: a non-rare 
related to the upcrossing of the intermediate threshold 
and a rare problem related to capsizing after the 
threshold has been crossed. Two modes of stability 
failure are being considered in the current phase of the 
project: pure loss of stability and broaching-to 
preceded by surf-riding. 

For capsizing caused by stability variations in 
waves, the focus has been on numerical 
implementation issues, as the theoretical “proof of 
concept” has been successfully completed and 
previously reported. The probabilistic properties of roll 
motion in stern quartering seas were studied using the 
results of LAMP numerical simulation tumblehome 
configuration of the ONR Topsides series. The results 
have shown that the dependence between roll angles 
and rates is significant and cannot be ignored. 

The procedure of application of the split-time 
method was changed accordingly. Instead of using 
approximations for distributions, the emphasis has 
shifted to statistical extrapolation methods. While 



 

peak-over threshold (POT) method is used for the rare 
problem, a special extrapolation method was developed 
for the distribution of the dependent process at the instant 
of upcrossing. Application of this method will help to 
complete the rare problem. 

For the probability of capsizing caused by 
broaching-to, the results of numerical study of surf-
riding in irregular waves are reported. A simple, 1-DOF 
model of surging and surf-riding in irregular waves has 
been presented that is capable of reproducing the 
fundamentals of surf-riding behavior in irregular waves. 

The consideration of the probabilistic modeling 
of surf-riding has led to the formulation of the problem 
of celerity of irregular waves.  While this problem is 
quite deep and goes beyond its application for surf-riding 
in irregular waves, a satisfactory definition has been 
derived through the speed of translation of certain wave 
properties, in particular the maximum of the wave slope. 
It was also shown that the concept of irregular wave 
celerity reveals the random appearance and 
disappearance of the surf-riding equilibria that define the 
topology of the phase space.   

The immediate future work includes the 
competition of numerical scheme for probability of 
capsizing caused by stability variation in waves, 
including research and implementation of uncertainty 
estimates of the distribution of the dependent process at 
the instant of upcrossing. For the broaching-to, the future 
work includes development of scheme of application of 
the split-time method for surf-riding and broaching-to as 
well as the test of the concept. 
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